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Why Do We Care About Snow? 

• Water Supply in the Western United States 
• Meltwater from the snowpack in the headwaters can provide 50-80% of the annual 

downstream water supply (Wahl, 1992). 
• Headwater catchments compose less than 25% of the total land area, but snowmelt 

from these areas provide roughly 70% of the annual runoff (Barros & Lettenmaier, 
1993). 

• Flooding 
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Overview 

• Modeling of Snow Water Equivalent (SWE) 
• Four Snow Accumulation / Melt Methods 

• Energy Balance Method 
• Temperature-Index Method 
• Hybrid Energy Balance Method 
• Radiation-derived Temperature-Index Method 

• Accounting for the Snow Pack Dynamics within the 
Snow Pack 

 

• Adjustments to HMET Forcing Data 
 

• Melt Water Transport 
• Vertical Flow through Snow Pack 
• Lateral Flow through Snow Pack 
• Frozen Ground to Impede Infiltration 

 

• Examples 
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Four Snow Methods in GSSHA 

• Energy Balance Method (EB) – accounts for the 
energy fluxes between the snow pack, ground 
layer, and atmosphere.  If enough energy is input 
into the pack then melting occurs. 

• Temperature-Index Method (TI) – The amount of 
melt within the snow pack is based on the 
temperature, precipitation, and calibrated 
parameters.  Based on SNOW-17. 

• Hybrid Energy Balance Method (HY, Default) – 
modification of the Energy Balance model that 
accounts for snow pack temperature dynamics 
(heat deficits). 

• Radiation-Derived Temperature-Index Method (RTI) 
– Also based on SNOW-17, but uses a radiation-
derived proxy temperature instead of air 
temperature in the melt equations. 
 

Picture Adapted from: Tarboton 1996 
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Snow Energy Balance (EB) 

Simulating SWE – EB vs TI (In General) 

𝑄𝑄𝑎𝑎– Net Radiation 
𝑄𝑄𝑝𝑝– Precipitation Heat Flux 
𝑄𝑄ℎ– Sensible Heat Flux 
𝑄𝑄𝑒𝑒– Latent Heat Flux 
𝑄𝑄𝑔𝑔– Ground Heat Flux 
𝜎𝜎 – Stefan Boltzmann 
Constant 
𝜀𝜀 – Emissivity (0-1) 
𝛼𝛼 – Albedo 
𝐿𝐿𝑓𝑓– Latent Heat of Fusion 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
∑𝑄𝑄
𝐿𝐿𝑓𝑓

𝑑𝑑𝑑𝑑 Temperature Index (TI) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑓𝑓  𝑇𝑇𝑎𝑎  𝑑𝑑𝑑𝑑 
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Simulating SWE – EB & HY Methods 

Qmelt = Qa – Qbs + Qe + Qh + Qprecip 
 

• Qmelt total energy available to melt snow 
 

• Qe energy due to evaporation and sublimation 
   f(temperature, humidity, wind) 

 

• Qh sensible heat transfer due to turbulence 
  f(temperature, pressure, wind) 

 

• Qa energy due to longwave radiation 
  f(temperature) 

 

• Qbs energy due to longwave emission by soil 
  considered constant (27 cal cm-2 hr-1) 

 

• Qprecip energy due to precipitation 
  f(precipitation, temperature) 
 

Assumes 1 cc of snow will melt for every 336 Joules  
 which = 80 cal per gram of water 
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Picture Adapted from: Tarboton 1996 

HY Method accounts for cold 
content (heat deficit) within 

the snowpack. 



Watershed Management And Modeling 

Based on SNOW-17 (Anderson 1968; 1973; and 2006) 
• Melt occurs once heat deficit is overcome 
• Melt rates (𝑀𝑀) based on Air Temperature and calibrated Melt Factors 
 
 𝑀𝑀 = 𝑀𝑀𝑓𝑓 ∙ 𝑇𝑇𝑎𝑎 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 0.0125 ∙ 𝑃𝑃 ∙ 𝑓𝑓𝑟𝑟 ∙ 𝑇𝑇𝑟𝑟       Melt under normal circumstances 
 
 𝑀𝑀 = 𝜎𝜎 ∙ 𝑑𝑑𝑑𝑑 ∙  𝑇𝑇𝑎𝑎 + 273 4 − 2734 +0.0125 ∙ 𝑃𝑃 ∙ 𝑓𝑓𝑟𝑟∙ 𝑇𝑇𝑟𝑟 +8.5 ∙ 𝑓𝑓𝑢𝑢 ∙ 𝑑𝑑𝑑𝑑 6⁄ ∙ 

𝑟𝑟𝑟 ∙ 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 − 6.11 +0.00057 ∙ 𝑃𝑃𝑎𝑎∙ 𝑇𝑇𝑎𝑎       Melt during rain events. 
 
 where: 
   𝑀𝑀𝑓𝑓= melt factor, varies daily between a calibrated minimum and maximum value 
   𝑃𝑃 = precipitation 
   𝑓𝑓𝑟𝑟  = fraction of precipitation in form of rain 
    𝑓𝑓𝒖𝒖  = wind function 
   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = temperature at which snow begins to melt 
  
 

Simulating SWE – TI Method 
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Temperature Index (TI) 

𝑇𝑇𝑎𝑎 ≈
𝐿𝐿𝐿𝐿↓
σ 𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎

1/4

 

𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑀𝑀𝑓𝑓 𝑇𝑇𝑎𝑎 𝑑𝑑𝑑𝑑 

Radiation-Derived Temperature 
Index (RTI) 

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 ≈
𝐿𝐿𝐿𝐿↓ + 𝑆𝑆𝑊𝑊↓𝑛𝑛𝑛𝑛𝑛𝑛

σ 𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

1/4

 

𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑀𝑀𝑓𝑓 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑 

Requires: 
   Temperature 
   Precipitation 

Requires: 
   Temperature 
   Precipitation 
   Cloud Cover 

Simulating SWE – TI to RTI Method 
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Simulating SWE – RTI Method 

How to get 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟  
 Account for SW radiation and related reductions 
     𝑆𝑆𝑆𝑆↓ = 𝑆𝑆0 𝐾𝐾𝑟𝑟  𝐾𝐾𝑣𝑣 𝐾𝐾𝑐𝑐  𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎 𝐾𝐾𝑠𝑠 𝐾𝐾𝑡𝑡 

𝑆𝑆0=Solar Constant 
𝐾𝐾𝑟𝑟=ratio of actual earth-sun distance to mean earth-sun distance (fraction) 
𝐾𝐾𝑣𝑣=vegetation  
𝐾𝐾𝑐𝑐=clouds  
𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎=atmospheric absorption and scattering  
𝐾𝐾𝑡𝑡=topographic shading 
𝐾𝐾𝑠𝑠=aspect angle 
 

 Include snow albedo model (Henneman & Stefan, 1999) 
 

 Account for LW radiation from clouds and canopy (𝐿𝐿𝐿𝐿↓) 
 LW clear sky, including emissivity of air (Bras, 1990) 
 Increase of LW due to clouds (TVA, 1972) 
 Adjustment of LW due to vegetation (Liston & Elder, 2006). 
 

For more details see Follum et al. (2015) 
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Simulating SWE - Overview 

• Energy Balance Method 
• Uses Energy Balance Algorithms to determine melt and accumulation, but 

does not include Heat Deficit. 
• Typically underestimates SWE when topography not accounted for in the 

model. 
 

• Temperature-Index Method 
• Uses temperature, precipitation, and calibrated parameters to simulate snow 

accumulation and melt. 
• Incorporates the Heat Deficit / Snow Pack Dynamics 
• Requires Calibration (9 Parameters) 
 
 

• Hybrid Energy Balance (Default in GSSHA) 
• Incorporates the Energy Balance Melting Algorithms 
• Incorporates the Heat Deficit / Snow Pack Dynamics (4 Parameters) 
 

• Radiation-Derived Temperature-Index Method 
• Same as TI Method, but accounts for spatial heterogeneity in energy, and 

therefore produces a more accurate spatial representation of the snowpack. 
• Requires Calibration (8+ Parameters) 
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Adjustments to HMET Forcing Data 

• Three methods for adjusting HMET with Elevation 
• SIMPLE:  Define a constant temperature lapse 

rate, then GSSHA adjusts temperature.  Based on 
change in temperature, relative humidity and 
pressure can also be adjusted. 

• COMPLEX:  Let GSSHA automatically adjust 
temperature, pressure, and relative humidity 
based on elevation using MALR. 

• PUNT:  Input raster-based forcing data from an 
atmospheric model, such as MicroMet (Liston & 
Elder, 2006) 

Typically, I use a simple Lapse Rate 
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Melt Water Transport 

• Once snow melts the water is transported through the 
system in several ways: 
• Vertically through the Snowpack 
• Laterally through the Snowpack 
• Infiltration into Groundwater 
• Overland Flow 
• Channel Flow, Etc. 
 

• GSSHA simulates the vertical and lateral flow through 
the Snowpack 

• Accurate groundwater simulations is also very important 
for capturing the timing of flows.  A frozen ground 
simulation determines when the ground is frozen - 
inhibiting infiltration into groundwater. 
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Melt Water Transport – Basics 

• Flow through Snow is the same as a flow through a 
porous medium. 
 

• A form of Darcy’s Equation is typically used to   
determine flux rates through the snow pack, both 
vertically and laterally. 
 

• Vertical Flow is typically considered Unsaturated Flow. 
 

• Lateral Flow at the bottom of the snow pack is typically 
considered Saturated Flow. 
 

• GSSHA uses the SNAP model (Albert 1998) to determine 
the saturation, saturated / unsaturated hydraulic 
conductivity, and effective porosity of the snow pack in 
each cell. 
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Melt Water Transport – Vertical Flow 

• Vertical Flow is considered unsaturated 
flow, but the hydraulic conductivity and 
effective porosity change with the 
degree of Saturation. 
 
 
 

• Flow is simulated through a single snow 
layer, but can have multiple wave fronts 
through the pack – based on both Albert 
(1998) and Bengtsson (1981). From: Bartelt (2002) 
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Melt Water Transport – Lateral Flow 

• Once the melt water reaches the ground it is considered Saturated Darcian Flow and uses 
methods developed by Colbeck (1974) to determine the flux volumes between each cell. 

From: Colbeck (1974) 

Hydraulic Conductivity 
Effective Porosity 

Hydraulic Properties of Water Constant 

Flux Rate 
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Melt Water Transport – Frozen Ground 

• GSSHA uses a temperature-index method (CFGI model; Molnau & Bissel, 1983) to 
determine when the ground beneath a snow pack is frozen, thus preventing infiltration. 
• See for more info: http://www.gsshawiki.com/Frozen_Soil:Frozen_Soil 

 

• The Handbook of Snow (Gray and Male, 1981) states that for long-term sustained water 
yields the groundwater flow component may be most important aspect considered. 

http://www.gsshawiki.com/Frozen_Soil:Frozen_Soil
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Melt Water Transport - Overview 

• Vertical Flow through Snow Pack 
 

• Lateral Flow through Snow Pack 
 

• Frozen Ground Simulation 
 

• Existing routing mechanisms already in GSSHA 
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Test Basin: Senator Beck Basin, CO (SBB) 

 Test Basin:  Senator Beck Basin, CO 
 Drainage Area: 2.91 km2 , Elev: 3362 – 4118 m 
 Alpine terrain with primarily bare rock and tundra, with some forest below 3600-m 

 Point Data Sources 
 Hydrometeorology at 3 sites from WY 2003  through current (Landry et al., 2014) 

 Temperature, precipitation, relative humidity, pressure, and wind speed 
 SWE, soil moisture, and shortwave (SW) radiation 

 Cloud cover data from Telluride Regional Airport (~16 km to northwest) 
 Streamflow data at outlet (Landry et al., 2014) 

 Spatial Data Sources 
 SCA estimates from LandSat Imagery (31 images) 

 Spectral signatures processed using ERDAS Imagine 
 Assigned classifications: snow, no snow, and snow fringe 

 Elevation -> 1/3 Arc Second NED (Gesch et al., 2002) 
 projected to 30 m grid 

 Land Cover -> 2006 NLCD (Fry et al., 2011) 
 Soils Data -> SSURGO dataset (Soil Survey Staff, 2014) 

Senator Beck Basin, CO 
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Highlights: 
• Showed accurate snow simulation in an Alpine terrain (Follum et al., 2015) 

• RTI model more accurate than TI and EB models 

Test Basin: Senator Beck Basin, CO (SBB) 
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SBB using TI and RTI Model 
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 Modest improvement in SWE at two gage sites 
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SBB using TI and RTI Model 

 Variability in SWE due to topography and vegetation 

N 
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SBB using TI and RTI Model 
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0.33 mm/hr 0.67 mm/hr 

• Watershed-based 

• Manual setup  

• Limited forecasting window 
 

 

Upper Helmand Basin Simulation:  
January – June 2010 

Helmand River Basin, Afghanistan 
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Data Sources 
• NRCS / USDA - http://www.wcc.nrcs.usda.gov/ 

• SNOTEL, SCAN, Snowcoarses 
 

• National Snow & Ice Data Center - http://nsidc.org/ 
 

• Remotely Sensed 
• Landsat, MODIS, AVHRR 
 

• CZO’s - http://criticalzone.org/national/ 
 

• Test Watersheds: 
• Senator Beck Basin, CO 
• Niwot Ridge, CO 
• Fraser Experimental Forest, CO 
• Loch-Vail, CO 
• Reynolds Experimental Watershed, ID 
• Sleepers River, VT 
• Hubbard Brook, NH 
• HJ Andrews, OR 
• Marmot Creek, Canada Rockies 

http://www.wcc.nrcs.usda.gov/
http://nsidc.org/
http://criticalzone.org/national/
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