Difference between revisions of "Mapping Table:Sediment Erosion Mapping Tables"
(→Soil Erosion Properties Mapping Table) |
(→Soil Erosion Properties Mapping Table) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 39: | Line 39: | ||
|- | |- | ||
| RowSpan=9 | SEDIMENT | | RowSpan=9 | SEDIMENT | ||
− | | RowSpan=9 | | + | | RowSpan=9 | 6+ |
− | | | + | | Soil erodibility due to rainfall, Equation (98) || J<sup>-1</sup> |
| | | | ||
|- | |- | ||
− | | | + | | Runoff detachment coefficient "a", Equation (101)|| dimensionless |
− | |||
− | |||
− | |||
| | | | ||
|- | |- | ||
− | | | + | | Runoff detachment index "b", Equation (101) || dimensionless |
| | | | ||
|- | |- | ||
− | + | | Critical shear, Equation (101) || Pa | |
− | |||
− | |||
− | |||
− | |||
− | | Critical | ||
|- | |- | ||
| Erosivity, Equations 108 and 109 || dimensionless (0-1) | | Erosivity, Equations 108 and 109 || dimensionless (0-1) | ||
Line 65: | Line 57: | ||
|} | |} | ||
− | The equations referred to in the table are described in Section 10.1 of the manual. | + | The equations referred to in the table are described in Section 10.1 of the manual. |
The format is: table name, SOIL_EROSION_PROPS, followed by the name of the index map on the first line; NUM_IDS followed by the number of IDs on the second line; NUM_SED with the number of sediments in the table on line 3. | The format is: table name, SOIL_EROSION_PROPS, followed by the name of the index map on the first line; NUM_IDS followed by the number of IDs on the second line; NUM_SED with the number of sediments in the table on line 3. | ||
Line 75: | Line 67: | ||
</pre> | </pre> | ||
− | This is followed by the table data with one line of | + | This is followed by the table data with one line of five erosion properties followed by the fraction of sediments for each NUM_SED size classes, listed in the order of the particles sizes in the SEDIMENTS table, for each NUM_ID. For our three sediment sizes described in the SEDIMENTS table, a SOIL_EROSION_PROPS table for an index map based on land use and soil type with 4 categories might look like. |
<pre> | <pre> | ||
Line 81: | Line 73: | ||
NUM_IDS 4 | NUM_IDS 4 | ||
NUM_SED 3 | NUM_SED 3 | ||
− | ID DESCRIP1 DESCRIP2 | + | ID DESCRIP1 DESCRIP2 SPLASH_K DETACH_COEF DETACH_INDEX DETACH_CRIT SED_K 3 SEDIMENT.... |
− | 101 Grass Coarse 0. | + | 101 Grass Coarse 0.50000 0.050000 1.0000 3.1000 0.0002 0.9000 0.1000 0.0000 |
− | 102 Res Coarse 0. | + | 102 Res Coarse 0.50000 0.000100 1.0000 3.1000 0.0005 0.9000 0.1000 0.0000 |
− | 103 Grass Sandy Loam | + | 103 Grass Sandy Loam 5.00000 0.010000 1.0000 3.1000 0.0150 0.6500 0.2000 0.1500 |
− | 104 Grass Loam | + | 104 Grass Loam 10.0000 0.004000 1.0000 3.1000 0.0050 0.4500 0.3500 0.2000 |
</pre> | </pre> | ||
Latest revision as of 22:12, 9 January 2017
Sediment transport on the oveland flow plane requires two mapping tables. In the first mapping table, SEDIMENTS, the number of soil particles and the physical properties of those soil particles must first be specified. Then the erosive properties of the soil are specfied in a separate table, SOIL_EROSION_PROPS. These tables are part of the grid mapping table file (.cmt) but are discussed separately because the format is different from the other mapping tables.
Sediment Mapping Table
The SEDIMENTS mapping table is used to define the sediments to be transported. The user must specify the number of sediments and the specific gravity and particle diamter (mm) and an output filename of each sediment to be simulated. The number of sediments is defined for the entire simulation. There is no linkage to an index map for this table. The size fractions are linked to the overland cell in the SOIL_EROSION_PROPS table. The sediments specified may or may not be in all the cells but only sediments specified in the SEDIMENT table can be included in the simulation. The table header information consists of the table card and the NUM_SED card.
SEDIMENTS NUM_SED ##
This is followed by the table data, which contains one line for each specified sediment in the following format.
Text line... [ID] [DESC...] ... [specific gravity] [particle diameter] [output filename] [ID] [DESC...] ... [specific gravity] [particle diameter] [output filename] ... [ID] [DESC...] ... [specific gravity] [particle diameter] [output filename]
For the most common case, three sediments sizes (sand, silt, clay) all made of quartz, the SEDIMENTS table would look like this.
SEDIMENTS NUM_SED 3 Sediment Description Spec. Grav Part. Dia Output Filename Sand 2.650000 0.250000 sand Silt 2.650000 0.016000 silt Clay 2.650000 0.001000 clay
Soil Erosion Properties Mapping Table
After defining the sediment particles to be transported in the SEDIMENT table, the SOIL_EROSION_PROPS table is used to specify the soil erosion properties for each index type. The SOIL_EROSION_PROPS in the table are:
Table Name | # Values | Parameter | Units | |
---|---|---|---|---|
SEDIMENT | 6+ | Soil erodibility due to rainfall, Equation (98) | J-1 | |
Runoff detachment coefficient "a", Equation (101) | dimensionless | |||
Runoff detachment index "b", Equation (101) | dimensionless | |||
Critical shear, Equation (101) | Pa | |||
Erosivity, Equations 108 and 109 | dimensionless (0-1) | |||
% Sediments | fraction |
The equations referred to in the table are described in Section 10.1 of the manual.
The format is: table name, SOIL_EROSION_PROPS, followed by the name of the index map on the first line; NUM_IDS followed by the number of IDs on the second line; NUM_SED with the number of sediments in the table on line 3.
SOIL_EROSION_PROPS "index map name" NUM_IDS #ids NUM_SED #sediments
This is followed by the table data with one line of five erosion properties followed by the fraction of sediments for each NUM_SED size classes, listed in the order of the particles sizes in the SEDIMENTS table, for each NUM_ID. For our three sediment sizes described in the SEDIMENTS table, a SOIL_EROSION_PROPS table for an index map based on land use and soil type with 4 categories might look like.
SOIL_EROSION_PROPS "LUST" NUM_IDS 4 NUM_SED 3 ID DESCRIP1 DESCRIP2 SPLASH_K DETACH_COEF DETACH_INDEX DETACH_CRIT SED_K 3 SEDIMENT.... 101 Grass Coarse 0.50000 0.050000 1.0000 3.1000 0.0002 0.9000 0.1000 0.0000 102 Res Coarse 0.50000 0.000100 1.0000 3.1000 0.0005 0.9000 0.1000 0.0000 103 Grass Sandy Loam 5.00000 0.010000 1.0000 3.1000 0.0150 0.6500 0.2000 0.1500 104 Grass Loam 10.0000 0.004000 1.0000 3.1000 0.0050 0.4500 0.3500 0.2000
For this case cells with LUST index 101, defined as coarse textured soils with grass land use, are 90% sand, 10% silt, and no clay. Loam soils with a grass land use, LUST index 104, are 45% sand, 35% silt, and 20% clay. If one or more of these LUST types includes particles sizes different from the three specified, that soil particle will have to be added to the SEDIMENTS table before a fractional amount can be added to the SOIL_EROSION_PROPS table.
GSSHA User's Manual
- 12 Mapping Table
- 12.1 File Description
- 12.2 Index Maps
- 12.3 Grid-based Mapping Tables
- 12.4 ID Line Format
- 12.5 Example Mapping Table File
- 12.6 Stream Mapping Tables
- 12.7 Sediment Erosion Mapping Tables
- 12.7 Constituent Mapping Tables