Difference between revisions of "Surface Water Routing:Overland Routing with Snow"
(Replaced content with " <noinclude> {{Nav|Nav5}} </noinclude>") |
|||
Line 1: | Line 1: | ||
+ | '''Overland Routing with Snow'''<br> | ||
+ | During overland flow routing, as described in Section 5.2, GSSHA ignores snow in an overland flow cell unless the user specfies to route the flow through the snow using Darcy's law with the project card '''SNOW_LAT_ROUTE'''. Routing through the snow as free surface flow may cause simulated flows to be higher and arrive earlier than measured flows strongly influenced by the snowpack. When this card is specifed, the flow in cells with a snowpack will be computed using Darcy's law. If this card is specified the default is to use the SNAP calculated vertical hydrualic conductivity (K) for computation of flow through the snow in the lateral flow computations. The alternative is to specify the lateral hydraulic conductivity with the '''SNOW_DARCY''' card, which is followed with a value of hydraulic conductivity (m/s). References report hydraulic conductivities of snow on the order of 1 cm/s (0.01 m/s) (Colbeck and Anderson,1982). The current implementation of the SNAP model produces simliar values but as of v6.2 the implementation of SNAP in GSSHA is considered experimental and is not currently reccomended and it is reccomended that the user specify the lateral hydrualic conductivity of the snow using the '''SNOW_DARCY''' card. | ||
+ | <br><br> | ||
Revision as of 18:30, 14 November 2013
Overland Routing with Snow
During overland flow routing, as described in Section 5.2, GSSHA ignores snow in an overland flow cell unless the user specfies to route the flow through the snow using Darcy's law with the project card SNOW_LAT_ROUTE. Routing through the snow as free surface flow may cause simulated flows to be higher and arrive earlier than measured flows strongly influenced by the snowpack. When this card is specifed, the flow in cells with a snowpack will be computed using Darcy's law. If this card is specified the default is to use the SNAP calculated vertical hydrualic conductivity (K) for computation of flow through the snow in the lateral flow computations. The alternative is to specify the lateral hydraulic conductivity with the SNOW_DARCY card, which is followed with a value of hydraulic conductivity (m/s). References report hydraulic conductivities of snow on the order of 1 cm/s (0.01 m/s) (Colbeck and Anderson,1982). The current implementation of the SNAP model produces simliar values but as of v6.2 the implementation of SNAP in GSSHA is considered experimental and is not currently reccomended and it is reccomended that the user specify the lateral hydrualic conductivity of the snow using the SNOW_DARCY card.
GSSHA User's Manual
- 5 Surface Water Routing
- 5.1 Channel Routing
- 5.2 Overland Flow Routing
- 5.3 Channel Boundary Conditions
- 5.4 Overland Boundary Conditions
- 5.5 Embankments
- 5.6 Overland/Channel Interaction
- 5.7 Introducing Discharge/Constituent Hydrographs
- 5.8 Overland Routing with Snow
- 5.9 Overland Routing with BMPs