Difference between revisions of "Snow Card Inputs - Optional"
From Gsshawiki
Line 72: | Line 72: | ||
! Card !! Argument !! Units !! Description | ! Card !! Argument !! Units !! Description | ||
|- | |- | ||
− | | <pre>SNAP_RETENTION</pre> || || || Uses the SNAP model to simulate the vertical transport of melt-water through the snow pack ('''[[Vertical MWT]]'''). | + | | <pre>SNAP_RETENTION</pre> || || || Uses the SNAP model (Albert & Krajeski, 1998) to simulate the vertical transport of melt-water through the snow pack ('''[[Vertical MWT]]'''). |
|- | |- | ||
− | | <pre>VERT_SNOW_RETENTION</pre> || || || Uses the SNAP model to simulate the vertical transport of melt-water through the snow pack ('''[[Vertical MWT]]'''), but also distributes the melt incrementally over an hour instead of abruptly at every timestep that SNAP is run (which is hourly). | + | | <pre>VERT_SNOW_RETENTION</pre> || || || Uses the SNAP model (Albert & Krajeski, 1998) to simulate the vertical transport of melt-water through the snow pack ('''[[Vertical MWT]]'''), but also distributes the melt incrementally over an hour instead of abruptly at every timestep that SNAP is run (which is hourly). |
|} | |} | ||
Revision as of 17:28, 28 November 2012
The following tables list all project file cards pertaining to snow accumulation, melt, and melt-water transport.
Cards calling which snow melt algorithm to use
Melt Method | Card | Description |
---|---|---|
Hybrid Energy Balance | default (no card required) |
The Hybrid Energy Balance Method for melting snow is the default, so it is utilized if NWSRFS_SNOW and EB_SNOW are not present in the Project File. |
Temperature Index | NWSRFS_SNOW |
The Temperature Index Method for melting snow is utilized if this card is present in the Project File. |
Energy Balance | EB_SNOW |
The Energy Balance Method for melting snow is utilized if this card is present in the Project File. |
Cards Associated with All Three Melt Methods
Card | Argument | Units | Description |
---|---|---|---|
NWSRFS_SCF ##.## |
real | fraction | Snow Cover Factor (adjusts for mis-readings in the gage data (see Continuous:Snowfall_Accumulation_and_Melting). |
SNOW_TEMP_BASE ##.## |
real | °C | Base Temperature (MBASE) at which melt begins in snow. |
SNOW_SWE_FILE ***.swe |
File | m | Outputs time-series snow water equivalent maps (similar to DEP file). |
Cards Associated with BOTH Hybrid Energy Balance and Temperature Index Methods
Card | Argument | Units | Description |
---|---|---|---|
NWSRFS_FR_USE ##.## |
real | fraction | Specifies the fraction of precipitation in the form of rain when the temperature in the cell drops below MBASE. |
NWSRFS_TIPM ##.## |
real | Snow Cover Thermal Gradient | |
NWSRFS_NMF ##.## |
real | mm/°C/dt | Negative Melt Factor. |
NWSRFS_FUA ##.## |
real | Empirical Wind Function Factor. | |
NWSRFS_PLWHC ##.## |
real | % | Percent Liquid Water Holding Capacity. |
Cards Associated with JUST Temperature Index Method
Card | Argument | Units | Description |
---|---|---|---|
NWSRFS_MF_MAX ##.## |
real | mm/°C/dt | Maximum Melt Factor, only works with NWSRFS_SNOW. |
NWSRFS_MF_MIN ##.## |
real | mm/°C/dt | Minimum Melt Factor, only works with NWSRFS_SNOW. |
Cards Associated with Vertical Melt Water Transport (Vertical MWT)
Card | Argument | Units | Description |
---|---|---|---|
SNAP_RETENTION |
Uses the SNAP model (Albert & Krajeski, 1998) to simulate the vertical transport of melt-water through the snow pack (Vertical MWT). | ||
VERT_SNOW_RETENTION |
Uses the SNAP model (Albert & Krajeski, 1998) to simulate the vertical transport of melt-water through the snow pack (Vertical MWT), but also distributes the melt incrementally over an hour instead of abruptly at every timestep that SNAP is run (which is hourly). |
Cards Associated with Lateral Melt Water Transport (Lateral MWT)
Card | Argument | Units | Description |
---|---|---|---|
SNOW_DARCY |
Simulates the lateral transport of melt-water through the snow pack based on work by Colbeck (1974) (Lateral MWT). | ||
SNOW_REYNOLDS ##.## |
real | Reynolds Number at which flow simulation switches from Darcian to regular Overland. Only effects cells covered by snow and only works when SNOW_DARCY card present in Project File. |
Cards Associated with Orographic Effects
Card | Argument | Units | Description |
---|---|---|---|
OROGVAR_HMET |
Adjusts the temperature in each cell based on elevation differences between the cell and the gage site (Orographic Effects). | ||
HMET_ELEV_GAGE ##.## |
real | m | Elevation (m) of the gage site where temperature is measured. Only works when OROGVAR_HMET card present in Project File. |
HMET_LAPSE_RATE ##.## |
real | °C km-1 | Dry adiabatic lapse rate of the area modeled. Only works when OROGVAR_HMET card present in Project File. |
GSSHA User's Manual
- 3 Project File
- 3.1 Required Inputs
- 3.2 Mapping Table – Optional
- 3.3 Overland Flow – Required
- 3.4 Interception – Optional
- 3.5 Rainfall Input and Options – Required
- 3.6 Infiltration – Optional
- 3.7 Channel Routing – Optional
- 3.8 Continuous Simulations – Optional
- 3.9 Saturated Groundwater Flow – Optional
- 3.10 Soil Erosion – Optional
- 3.11 Constituent Transport – Optional
- 3.12 Subsurface Drainage Network – Optional
- 3.13 Output Files – Required